
Resit exam (online) — Functional Analysis (WIFA–08)

Tuesday 7 July 2020, 8.30h–11.30h CEST (plus 30 minutes for uploading)

University of Groningen

Instructions

1. Only references to the lecture notes and slides are allowed. References to other
sources are not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1 + p/10.

4. Write both your name and student number on the answer sheets!

5. This exam comes in two versions. Both versions consist of five problems of
equal difficulty.

Make version 1 if your student number is odd.

Make version 2 if your student number is even.

For example, if your student number is 1277456, which is even, then you have
to make version 2.

6. Please submit your work as a single PDF file.
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Version 1 (for odd student numbers)

Problem 1 (5 + 10 + 10 = 25 points)

Consider the following linear space:

W =

{
x = (x1, x2, x3, . . . ) : xk ∈ K, sup

k∈N
|xk|wk <∞

}
,

where wk ≥ 1 for all k ∈ N.

(a) Show that W ⊂ `∞.

(b) Prove that ‖x‖W = supk∈N |xk|wk is a norm on W.

(c) Let wk = k. Is the norm ‖ · ‖W equivalent to the sup-norm ‖ · ‖∞?

Problem 2 (5 + 10 + 15 = 30 points)

Equip the space C([0, 1],K) with the norm ‖f‖∞ = supx∈[0,1] |f(x)|, and consider
the following linear operator:

T : C([0, 1],K)→ C([0, 1],K), T f(x) = f(1− x).

(a) Compute the operator norm of T .

(b) Show that λ = 1 and λ = −1 are eigenvalues of T .

(c) Prove that if λ /∈ {−1, 1}, then λ ∈ ρ(T ) by explicitly computing (T − λ)−1.

Hint: in the equation f(1−x)−λf(x) = g(x) replace x by 1−x to get a system
of two equations from which f(x) can be solved.

Problem 3 (5 + 5 + 5 = 15 points)

Let X be a Hilbert space over C, and let T : X → X be a linear operator such that

(Tx, y) = (x, Ty) for all x, y ∈ X.

Prove the following statements:

(a) For y 6= 0 the map fy : X → C defined by fy(x) = (Tx, y)/‖y‖ is linear;

(b) supy 6=0 |fy(x)| <∞ for all x ∈ X;

(c) T is bounded.

Problem 4 (8 points)

Consider the following linear operator:

T : `∞ → `∞, T (x1, x2, x3, x4, . . . ) = (x1,
1
2
x2,

1
3
x3,

1
4
x4, . . . ).

Prove that ranT is not closed in `∞.
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Problem 5 (4 + 4 + 4 = 12 points)

On the linear space R2 we take the following norm:

‖x‖1 = |x1|+ |x2|, x = (x1, x2) ∈ R2.

(a) Show that norm of the linear map

f : R2 → R, f(x) = a1x1 + a2x2,

is given by ‖f‖ = max{|a1|, |a2|}.

(b) Let V = span {(1, 0)} and g(x) = 7x1 + 5x2. Compute all a1, a2 ∈ R such that:

(i) f(x) = g(x) for all x ∈ V ;

(ii) ‖f‖ = ‖g‖.

(c) Discuss the implication of part (b) for the Hahn-Banach Theorem.

End of test (“version 1”, 90 points)
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Version 2 (for even student numbers)

Problem 1 (5 + 10 + 10 = 25 points)

Consider the following linear space:

W =

{
x = (x1, x2, x3, . . . ) : xk ∈ K, sup

k∈N
|xk|wk <∞

}
,

where wk ≥ 1 for all k ∈ N.

(a) Show that W ⊂ `∞.

(b) Prove that ‖x‖W = supk∈N |xk|wk is a norm on W.

(c) Let wk = (k + 1)/k. Is the norm ‖ · ‖W equivalent to the sup-norm ‖ · ‖∞?

Problem 2 (5 + 10 + 15 = 30 points)

Equip the space C([−π, π],K) with the norm ‖f‖∞ = supx∈[−π,π] |f(x)|, and consider
the following linear operator:

T : C([−π, π],K)→ C([−π, π],K), T f(x) = f(−x).

(a) Compute the operator norm of T .

(b) Show that λ = 1 and λ = −1 are eigenvalues of T .

(c) Prove that if λ /∈ {−1, 1}, then λ ∈ ρ(T ) by explicitly computing (T − λ)−1.

Hint: in the equation f(−x)− λf(x) = g(x) replace x by −x to get a system of
two equations from which f(x) can be solved.

Problem 3 (5 + 5 + 5 = 15 points)

Let X be a Hilbert space over C, and let T : X → X be a linear operator such that

(Tx, y) = (x, Ty) for all x, y ∈ X.

Prove the following statements:

(a) For y 6= 0 the map fy : X → C defined by fy(x) = (Tx, y)/‖y‖ is linear;

(b) supy 6=0 |fy(x)| <∞ for all x ∈ X;

(c) T is bounded.

Problem 4 (8 points)

Consider the following linear operator:

T : `1 → `1, T (x1, x2, x3, x4, . . . ) = (x1,
1
4
x2,

1
9
x3,

1
16
x4, . . . ).

Prove that ranT is not closed in `1.
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Problem 5 (4 + 4 + 4 = 12 points)

On the linear space R2 we take the following norm:

‖x‖∞ = max{|x1|, |x2|}, x = (x1, x2) ∈ R2.

(a) Show that norm of the linear map

f : R2 → R, f(x) = a1x1 + a2x2,

is given by ‖f‖ = |a1|+ |a2|.

(b) Let V = span {(1, 1)} and g(x) = 3x1 + 5x2. Compute all a1, a2 ∈ R such that:

(i) f(x) = g(x) for all x ∈ V ;

(ii) ‖f‖ = ‖g‖.

(c) Discuss the implication of part (b) for the Hahn-Banach Theorem.

End of test (“version 2”, 90 points)
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Solution of problem 1, version 1 and 2 (5 + 10 + 10 = 25 points)

(a) We have that |xk| ≤ |xk|wk for all k ∈ N. Taking the supremum over all k ∈ K
gives

sup
k∈N
|xk| ≤ sup

k∈N
|xk|wk.

Hence, if x ∈W, then supk∈N |xk| <∞ which means that x ∈ `∞.
(5 points)

(b) Clearly, ‖x‖W ≥ 0 for all x ∈ W. If ‖x‖W = 0, then |xk|wk = 0 for all k ∈ N,
which implies that xk = 0 for all k ∈ K so that x = 0.
(2 points)

If x ∈W and λ ∈ K, then

‖λx‖W = sup
k∈N
|λxk|wk = sup

k∈N
|λ| |xk|wk = |λ| sup

k∈N
|xk|wk = |λ|‖x‖W.

(4 points)

If x, y ∈W, then

‖x+ y‖W = sup
k∈N
|xk + yk|wk

≤ sup
k∈N

(|xk|wk + |yk|wk)

≤ sup
k∈N
|xk|wk + sup

k∈N
|yk|wk

= ‖x‖W + ‖y‖W.

(4 points)

(c) Version 1. If wk = k, then the norms ‖ · ‖W and ‖ · ‖∞ are not equivalent.
Indeed, the sequence

en = (0, . . . , 0, 1, 0, 0, 0, . . . ),

where the 1 is at the n-th position, clearly lies in W. We have that

‖en‖∞ = 1 and ‖en‖W = n.

Therefore, there does not exist a constant C > 0 such that ‖x‖W ≤ C‖x‖∞ for
all x ∈W. This immediately implies that the norms are not equivalent.

Version 2. If wk = 1 + 1/k, then the norms ‖ · ‖W and ‖ · ‖∞ are equivalent.
Indeed, since 1 ≤ wk ≤ 2 for all k ∈ K it easily follows that

‖x‖∞ ≤ ‖x‖W ≤ 2‖x‖∞

for all x ∈W, which means that the norms are equivalent.
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Solution of problem 2, version 1 (5 + 10 + 15 = 30 points)

(a) For any f ∈ C([0, 1],K) we have

‖Tf‖∞ = sup
x∈[0,1]

|Tf(x)| = sup
x∈[0,1]

|f(1− x)| = sup
x∈[0,1]

|f(x)| = ‖f‖∞.

(3 points)

This implies that the operator norm of T is given by

‖T‖ = sup
f 6=0

‖Tf‖∞
‖f‖∞

= 1.

(2 points)

(b) We have that Tf = f if and only if

f(1− x) = f(x) for all x ∈ [0, 1],

which means that the graph of f is symmetric with respect to the vertical line
x = 1

2
. Clearly, there exist nonzero functions f which satisfy this condition. A

concrete example is given by any nonzero constant function. We conclude that
λ = 1 is an eigenvalue of T .
(5 points)

We have that Tf = −f if and only if

f(1− x) = −f(x) for all x ∈ [0, 1],

which means that the graph of f is antisymmetric with respect to the vertical
line x = 1

2
. Clearly, there exist nonzero functions f which satisfy this condition.

A concrete example is given by f(x) = x − 1
2
. We conclude that λ = −1 is an

eigenvalue of T .
(5 points)

(c) If (T − λ)f = g, then

f(1− x)− λf(x) = g(x) for all x ∈ [0, 1].

Replacing x by 1− x gives

f(x)− λf(1− x) = g(1− x) for all x ∈ [0, 1].

Hence, we obtain the following system of equations:(
−λ 1
1 −λ

)(
f(x)

f(1− x)

)
=

(
g(x)

g(1− x)

)
for all x ∈ [0, 1].

(5 points)

The coefficient matrix is invertible if and only if λ /∈ {−1, 1}. In that case we
find that

f(x) = − 1

λ2 − 1
(λg(x) + g(1− x)).
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(7 points)

This also implies that

(T − λ)−1 = − λ

λ2 − 1
I − 1

λ2 − 1
T

is bounded because it is a linear combination of the bounded operators I and
T . We conclude that λ ∈ ρ(T ).
(3 points)
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Solution of problem 2, version 2 (5 + 10 + 10 + 5 = 30 points)

(a) For any f ∈ C([−π, π],K) we have

‖Tf‖∞ = sup
x∈[−π,π]

|Tf(x)| = sup
x∈[−π,π]

|f(−x)| = sup
x∈[−π,π]

|f(x)| = ‖f‖∞.

(3 points)

This implies that the operator norm of T is given by

‖T‖ = sup
f 6=0

‖Tf‖∞
‖f‖∞

= 1.

(2 points)

(b) We have that Tf = f if and only if

f(−x) = f(x) for all x ∈ [−π, π],

which means that the graph of f is symmetric with respect to the y-axis. Clearly,
there exist nonzero functions f which satisfy this condition. A concrete example
is given by any nonzero constant function. We conclude that λ = 1 is an
eigenvalue of T .
(5 points)

We have that Tf = −f if and only if

f(−x) = −f(x) for all x ∈ [−π, π],

which means that the graph of f is antisymmetric with respect to the y-axis.
Clearly, there exist nonzero functions f which satisfy this condition. A concrete
example is given by f(x) = x. We conclude that λ = −1 is an eigenvalue of T .
(5 points)

(c) If (T − λ)f = g, then

f(−x)− λf(x) = g(x) for all x ∈ [−π, π].

Replacing x by −x gives

f(x)− λf(−x) = g(−x) for all x ∈ [−π, π].

Hence, we obtain the following system of equations:(
−λ 1
1 −λ

)(
f(x)
f(−x)

)
=

(
g(x)
g(−x)

)
for all x ∈ [−π, π].

(5 points)

The coefficient matrix is invertible if and only if λ /∈ {−1, 1}. In that case we
find that

f(x) = − 1

λ2 − 1
(λg(x) + g(−x)).

(7 points)
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This also implies that

(T − λ)−1 = − λ

λ2 − 1
I − 1

λ2 − 1
T

is bounded because it is a linear combination of the bounded operators I and
T . We conclude that λ ∈ ρ(T ).
(3 points)
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Solution of problem 3, version 1 and 2 (5 + 5 + 5 = 15 points)

(a) Let x, y, z ∈ X and λ, µ ∈ C. The fact that fy : X → C defined by fy(x) =
(Tx, y)/‖y‖ is a linear map follows from:

fy(λx+ µz) =
(T (λx+ µz), y)

‖y‖

=
(λTx+ µTz, y)

‖y‖

=
λ(Tx, y)

‖y‖
+
µ(Tz, y)

‖y‖

= λfy(x) + µfy(z).

(5 points)

(b) Let x ∈ X be arbitrary, then

|fy(x)| = |(Tx, y)|
‖y‖

≤ ‖Tx‖ ‖y‖
‖y‖

= ‖Tx‖.

This shows that
sup
y 6=0
|fy(x)| <∞

for all x ∈ X.
(5 points)

(c) By the uniform boundedness principle it follows that supy 6=0 ‖fy‖ < ∞. Since
(Tx, y) = (x, Ty) it follows with x = Ty/‖y‖ that

‖Ty‖2

‖y‖2
= fy

(
Ty

‖y‖

)
≤ ‖fy‖

‖Ty‖
‖y‖

so that

‖T‖ = sup
y 6=0

‖Ty‖
‖y‖

≤ sup
y 6=0
‖fy‖ <∞

which shows that T is bounded.
(5 points)
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Solution of problem 4, version 1 (8 points)

Method 1. Clearly, T is bounded. In addition, T is injective: indeed, Tx = 0 implies
x = 0. If ranT is closed in `∞, then T : `∞ → ranT is a bijective operator between
the Banach spaces `∞ and ranT . A corollary of the Open Mapping Theorem then
implies that the inverse T−1 : ranT → `∞ is bounded.
(3 points)

The inverse of T : `∞ → ranT is given by:

S : ranT → `∞, S(x1, x2, x3, x4, . . . ) = (x1, 2x2, 3x3, 4x4, . . . ).

Indeed, ST = I`∞ and TS = IranT and since inverses are unique it follows that S
must be the inverse of T .
(2 points)

However, S is not bounded since for the unit vector en = (0, . . . , 0, 1, 0, 0, 0, . . . )
it follows that ‖en‖∞ = 1 while ‖Sen‖∞ = n → ∞. From this contradiction we
conclude that ranT cannot be closed in `∞.
(3 points)

Method 2. Clearly, T is bounded. In addition, T is injective: indeed, Tx = 0 implies
x = 0. If ranT is closed in `∞, then we can apply the “Closed Range Proposition”
(which is in fact an application of the Open Mapping Theorem): there exists a
constant c > 0 such that

‖Tx‖ ≥ c‖x‖ for all x ∈ `∞.

(5 points)

However, for the unit vectors en = (0, . . . , 0, 1, 0, 0, 0, . . . ) we have ‖en‖∞ = 1 while
‖Ten‖∞ = 1/n→ 0. This implies that the inequality above cannot hold. From this
contradiction we conclude that ranT cannot be closed in `∞.
(3 points)
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Solution of problem 4, version 2 (8 points)

Method 1. Clearly, T is bounded. In addition, T is injective: indeed, Tx = 0 implies
x = 0. If ranT is closed in `1, then T : `1 → ranT is a bijective operator between
the Banach spaces `1 and ranT . A corollary of the Open Mapping Theorem then
implies that the inverse T−1 : ranT → `1 is bounded.
(3 points)

The inverse of T : `1 → ranT is given by:

S : ranT → `1, S(x1, x2, x3, x4, . . . ) = (x1, 4x2, 9x3, 16x4, . . . ).

Indeed, ST = I`1 and TS = IranT and since inverses are unique it follows that S
must be the inverse of T .
(2 points)

However, S is not bounded since for the unit vector en = (0, . . . , 0, 1, 0, 0, 0, . . . )
it follows that ‖en‖1 = 1 while ‖Sen‖1 = n2 → ∞. From this contradiction we
conclude that ranT cannot be closed in `1.
(3 points)

Method 2. Clearly, T is bounded. In addition, T is injective: indeed, Tx = 0 implies
x = 0. If ranT is closed in `1, then we can apply the “Closed Range Proposition”
(which is in fact an application of the Open Mapping Theorem): there exists a
constant c > 0 such that

‖Tx‖ ≥ c‖x‖ for all x ∈ `1.

(5 points)

However, for the unit vectors en = (0, . . . , 0, 1, 0, 0, 0, . . . ) we have ‖en‖1 = 1 while
‖Ten‖1 = 1/n2 → 0. This implies that the inequality above cannot hold. From this
contradiction we conclude that ranT cannot be closed in `1.
(3 points)
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Solution of problem 5, version 1 (4 + 4 + 4 = 12 points)

(a) We have that

|f(x)| = |a1x1 + a2x2| ≤ |a1| |x1|+ |a2| |x2| ≤ max{|a1|, |a2|}‖x‖1.

(2 points)

For the vectors x = (1, 0) and y = (0, 1) we have ‖x‖1 = ‖y‖1 = 1 while
|f(x)| = |a1| and |f(y)| = |a2|. Hence, we conclude that

‖f‖ = sup
x 6=0

|f(x)|
‖x‖1

= max{|a1|, |a2|}.

(2 points)

(b) If x = (1, 0) then f(x) = g(x) implies that a1 = 7. With this choice for a1 it
follows by linearity that f(x) = g(x) for all x ∈ V .
(2 points)

By part (a) it follows that ‖g‖ = 7. So in order to have ‖f‖ = 7 as well, we
must have that |a2| ≤ 7, or, equivalently, −7 ≤ a2 ≤ 7.
(2 points)

(c) We can see the map f , where a1 and a2 are as in part (b), as a norm preserving
extension of the map g restricted to V . This implies that norm preserving
extensions, of which the existence is guaranteed by the Hahn-Banach Theorem,
need not be unique.
(4 points)
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Solution of problem 5, version 2 (4 + 4 + 4 = 12 points)

(a) We have that

|f(x)| = |a1x1 + a2x2| ≤ |a1| |x1|+ |a2| |x2| ≤ (|a1|+ |a2|)‖x‖∞.

(2 points)

For the vectors x = (1, 1) we have ‖x‖∞ = 1 while |f(x)| = |a1| + |a2|. Hence,
we conclude that

‖f‖ = sup
x 6=0

|f(x)|
‖x‖∞

= |a1|+ |a2|.

(2 points)

(b) If x = (1, 1) then f(x) = g(x) implies that a1 + a2 = 8, or, equivalently,
a2 = 8−a1. With this choice for a1 and a2 it follows by linearity that f(x) = g(x)
for all x ∈ V .
(2 points)

By part (a) it follows that ‖g‖ = 8. So in order to have ‖f‖ = 8 as well, we
must have that |a1|+ |8− a1| = 8, or, equivalently, 0 ≤ a1 ≤ 8.
(2 points)

(c) We can see the map f , where a1 and a2 are as in part (b), as a norm preserving
extension of the map g restricted to V . This implies that norm preserving
extensions, of which the existence is guaranteed by the Hahn-Banach Theorem,
need not be unique.
(4 points)
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