Resit exam (online) - Functional Analysis (WIFA-08)

Tuesday 7 July 2020, 8.30h-11.30h CEST (plus 30 minutes for uploading) University of Groningen

Instructions

1. Only references to the lecture notes and slides are allowed. References to other sources are not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. If p is the number of marks then the exam grade is $G=1+p / 10$.
4. Write both your name and student number on the answer sheets!
5. This exam comes in two versions. Both versions consist of five problems of equal difficulty.

Make version 1 if your student number is odd.

Make version 2 if your student number is even.
For example, if your student number is 1277456 , which is even, then you have to make version 2.
6. Please submit your work as a single PDF file.

Version 1 (for odd student numbers)

Problem $1(5+10+10=25$ points $)$
Consider the following linear space:

$$
\mathcal{W}=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): x_{k} \in \mathbb{K}, \quad \sup _{k \in \mathbb{N}}\left|x_{k}\right| w_{k}<\infty\right\},
$$

where $w_{k} \geq 1$ for all $k \in \mathbb{N}$.
(a) Show that $\mathcal{W} \subset \ell^{\infty}$.
(b) Prove that $\|x\|_{\mathcal{W}}=\sup _{k \in \mathbb{N}}\left|x_{k}\right| w_{k}$ is a norm on \mathcal{W}.
(c) Let $w_{k}=k$. Is the norm $\|\cdot\|_{w}$ equivalent to the sup-norm $\|\cdot\|_{\infty}$?

Problem $2(5+10+15=30$ points $)$
Equip the space $\mathcal{C}([0,1], \mathbb{K})$ with the norm $\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|$, and consider the following linear operator:

$$
T: \mathcal{C}([0,1], \mathbb{K}) \rightarrow \mathcal{C}([0,1], \mathbb{K}), \quad T f(x)=f(1-x)
$$

(a) Compute the operator norm of T.
(b) Show that $\lambda=1$ and $\lambda=-1$ are eigenvalues of T.
(c) Prove that if $\lambda \notin\{-1,1\}$, then $\lambda \in \rho(T)$ by explicitly computing $(T-\lambda)^{-1}$.

Hint: in the equation $f(1-x)-\lambda f(x)=g(x)$ replace x by $1-x$ to get a system of two equations from which $f(x)$ can be solved.

Problem 3 (5 $+5+5=15$ points)
Let X be a Hilbert space over \mathbb{C}, and let $T: X \rightarrow X$ be a linear operator such that

$$
(T x, y)=(x, T y) \quad \text { for all } \quad x, y \in X .
$$

Prove the following statements:
(a) For $y \neq 0$ the map $f_{y}: X \rightarrow \mathbb{C}$ defined by $f_{y}(x)=(T x, y) /\|y\|$ is linear;
(b) $\sup _{y \neq 0}\left|f_{y}(x)\right|<\infty$ for all $x \in X$;
(c) T is bounded.

Problem 4 (8 points)

Consider the following linear operator:

$$
T: \ell^{\infty} \rightarrow \ell^{\infty}, \quad T\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(x_{1}, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \frac{1}{4} x_{4}, \ldots\right) .
$$

Prove that $\operatorname{ran} T$ is not closed in ℓ^{∞}.

Problem $5(4+4+4=12$ points $)$

On the linear space \mathbb{R}^{2} we take the following norm:

$$
\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|, \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} .
$$

(a) Show that norm of the linear map

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x)=a_{1} x_{1}+a_{2} x_{2},
$$

is given by $\|f\|=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|\right\}$.
(b) Let $V=\operatorname{span}\{(1,0)\}$ and $g(x)=7 x_{1}+5 x_{2}$. Compute all $a_{1}, a_{2} \in \mathbb{R}$ such that:
(i) $f(x)=g(x)$ for all $x \in V$;
(ii) $\|f\|=\|g\|$.
(c) Discuss the implication of part (b) for the Hahn-Banach Theorem.

Version 2 (for even student numbers)

Problem $1(5+10+10=25$ points $)$
Consider the following linear space:

$$
\mathcal{W}=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): x_{k} \in \mathbb{K}, \quad \sup _{k \in \mathbb{N}}\left|x_{k}\right| w_{k}<\infty\right\}
$$

where $w_{k} \geq 1$ for all $k \in \mathbb{N}$.
(a) Show that $\mathcal{W} \subset \ell^{\infty}$.
(b) Prove that $\|x\|_{\mathcal{W}}=\sup _{k \in \mathbb{N}}\left|x_{k}\right| w_{k}$ is a norm on \mathcal{W}.
(c) Let $w_{k}=(k+1) / k$. Is the norm $\|\cdot\|_{w}$ equivalent to the sup-norm $\|\cdot\|_{\infty}$?

Problem $2(5+10+15=30$ points $)$
Equip the space $\mathcal{C}([-\pi, \pi], \mathbb{K})$ with the norm $\|f\|_{\infty}=\sup _{x \in[-\pi, \pi]}|f(x)|$, and consider the following linear operator:

$$
T: \mathcal{C}([-\pi, \pi], \mathbb{K}) \rightarrow \mathcal{C}([-\pi, \pi], \mathbb{K}), \quad T f(x)=f(-x)
$$

(a) Compute the operator norm of T.
(b) Show that $\lambda=1$ and $\lambda=-1$ are eigenvalues of T.
(c) Prove that if $\lambda \notin\{-1,1\}$, then $\lambda \in \rho(T)$ by explicitly computing $(T-\lambda)^{-1}$. Hint: in the equation $f(-x)-\lambda f(x)=g(x)$ replace x by $-x$ to get a system of two equations from which $f(x)$ can be solved.

Problem 3 (5 $+5+5=15$ points)
Let X be a Hilbert space over \mathbb{C}, and let $T: X \rightarrow X$ be a linear operator such that

$$
(T x, y)=(x, T y) \quad \text { for all } \quad x, y \in X .
$$

Prove the following statements:
(a) For $y \neq 0$ the map $f_{y}: X \rightarrow \mathbb{C}$ defined by $f_{y}(x)=(T x, y) /\|y\|$ is linear;
(b) $\sup _{y \neq 0}\left|f_{y}(x)\right|<\infty$ for all $x \in X$;
(c) T is bounded.

Problem 4 (8 points)

Consider the following linear operator:

$$
T: \ell^{1} \rightarrow \ell^{1}, \quad T\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(x_{1}, \frac{1}{4} x_{2}, \frac{1}{9} x_{3}, \frac{1}{16} x_{4}, \ldots\right) .
$$

Prove that $\operatorname{ran} T$ is not closed in ℓ^{1}.

Problem $5(4+4+4=12$ points $)$

On the linear space \mathbb{R}^{2} we take the following norm:

$$
\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}, \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} .
$$

(a) Show that norm of the linear map

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x)=a_{1} x_{1}+a_{2} x_{2},
$$

is given by $\|f\|=\left|a_{1}\right|+\left|a_{2}\right|$.
(b) Let $V=\operatorname{span}\{(1,1)\}$ and $g(x)=3 x_{1}+5 x_{2}$. Compute all $a_{1}, a_{2} \in \mathbb{R}$ such that:
(i) $f(x)=g(x)$ for all $x \in V$;
(ii) $\|f\|=\|g\|$.
(c) Discuss the implication of part (b) for the Hahn-Banach Theorem.

Solution of problem 1, version 1 and $2(5+10+10=25$ points)
(a) We have that $\left|x_{k}\right| \leq\left|x_{k}\right| w_{k}$ for all $k \in \mathbb{N}$. Taking the supremum over all $k \in \mathbb{K}$ gives

$$
\sup _{k \in \mathbb{N}}\left|x_{k}\right| \leq \sup _{k \in \mathbb{N}}\left|x_{k}\right| w_{k}
$$

Hence, if $x \in \mathcal{W}$, then $\sup _{k \in \mathbb{N}}\left|x_{k}\right|<\infty$ which means that $x \in \ell^{\infty}$.
(5 points)
(b) Clearly, $\|x\|_{\mathcal{W}} \geq 0$ for all $x \in \mathcal{W}$. If $\|x\|_{\mathcal{W}}=0$, then $\left|x_{k}\right| w_{k}=0$ for all $k \in \mathbb{N}$, which implies that $x_{k}=0$ for all $k \in \mathbb{K}$ so that $x=0$.

(2 points)

If $x \in \mathcal{W}$ and $\lambda \in \mathbb{K}$, then

$$
\|\lambda x\|_{\mathcal{W}}=\sup _{k \in \mathbb{N}}\left|\lambda x_{k}\right| w_{k}=\sup _{k \in \mathbb{N}}|\lambda|\left|x_{k}\right| w_{k}=|\lambda| \sup _{k \in \mathbb{N}}\left|x_{k}\right| w_{k}=|\lambda|\|x\|_{\mathcal{W}} .
$$

(4 points)

If $x, y \in \mathcal{W}$, then

$$
\begin{aligned}
\|x+y\|_{\mathcal{W}} & =\sup _{k \in \mathbb{N}}\left|x_{k}+y_{k}\right| w_{k} \\
& \leq \sup _{k \in \mathbb{N}}\left(\left|x_{k}\right| w_{k}+\left|y_{k}\right| w_{k}\right) \\
& \leq \sup _{k \in \mathbb{N}}\left|x_{k}\right| w_{k}+\sup _{k \in \mathbb{N}}\left|y_{k}\right| w_{k} \\
& =\|x\|_{\mathcal{W}}+\|y\|_{\mathcal{W}} .
\end{aligned}
$$

(4 points)

(c) Version 1. If $w_{k}=k$, then the norms $\|\cdot\|_{\mathcal{W}}$ and $\|\cdot\|_{\infty}$ are not equivalent. Indeed, the sequence

$$
e_{n}=(0, \ldots, 0,1,0,0,0, \ldots),
$$

where the 1 is at the n-th position, clearly lies in \mathcal{W}. We have that

$$
\left\|e_{n}\right\|_{\infty}=1 \quad \text { and } \quad\left\|e_{n}\right\|_{\mathcal{W}}=n .
$$

Therefore, there does not exist a constant $C>0$ such that $\|x\|_{\mathcal{W}} \leq C\|x\|_{\infty}$ for all $x \in \mathcal{W}$. This immediately implies that the norms are not equivalent.

Version 2. If $w_{k}=1+1 / k$, then the norms $\|\cdot\|_{\mathcal{W}}$ and $\|\cdot\|_{\infty}$ are equivalent. Indeed, since $1 \leq w_{k} \leq 2$ for all $k \in \mathbb{K}$ it easily follows that

$$
\|x\|_{\infty} \leq\|x\|_{\mathcal{W}} \leq 2\|x\|_{\infty}
$$

for all $x \in \mathcal{W}$, which means that the norms are equivalent.

Solution of problem 2, version $1(5+10+15=30$ points $)$
(a) For any $f \in \mathcal{C}([0,1], \mathbb{K})$ we have

$$
\|T f\|_{\infty}=\sup _{x \in[0,1]}|T f(x)|=\sup _{x \in[0,1]}|f(1-x)|=\sup _{x \in[0,1]}|f(x)|=\|f\|_{\infty} .
$$

(3 points)

This implies that the operator norm of T is given by

$$
\|T\|=\sup _{f \neq 0} \frac{\|T f\|_{\infty}}{\|f\|_{\infty}}=1 .
$$

(2 points)

(b) We have that $T f=f$ if and only if

$$
f(1-x)=f(x) \quad \text { for all } \quad x \in[0,1],
$$

which means that the graph of f is symmetric with respect to the vertical line $x=\frac{1}{2}$. Clearly, there exist nonzero functions f which satisfy this condition. A concrete example is given by any nonzero constant function. We conclude that $\lambda=1$ is an eigenvalue of T.
(5 points)
We have that $T f=-f$ if and only if

$$
f(1-x)=-f(x) \quad \text { for all } \quad x \in[0,1],
$$

which means that the graph of f is antisymmetric with respect to the vertical line $x=\frac{1}{2}$. Clearly, there exist nonzero functions f which satisfy this condition. A concrete example is given by $f(x)=x-\frac{1}{2}$. We conclude that $\lambda=-1$ is an eigenvalue of T.
(5 points)
(c) If $(T-\lambda) f=g$, then

$$
f(1-x)-\lambda f(x)=g(x) \quad \text { for all } \quad x \in[0,1] .
$$

Replacing x by $1-x$ gives

$$
f(x)-\lambda f(1-x)=g(1-x) \quad \text { for all } \quad x \in[0,1] .
$$

Hence, we obtain the following system of equations:

$$
\left(\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right)\binom{f(x)}{f(1-x)}=\binom{g(x)}{g(1-x)} \quad \text { for all } \quad x \in[0,1] .
$$

(5 points)

The coefficient matrix is invertible if and only if $\lambda \notin\{-1,1\}$. In that case we find that

$$
f(x)=-\frac{1}{\lambda^{2}-1}(\lambda g(x)+g(1-x)) .
$$

(7 points)

This also implies that

$$
(T-\lambda)^{-1}=-\frac{\lambda}{\lambda^{2}-1} I-\frac{1}{\lambda^{2}-1} T
$$

is bounded because it is a linear combination of the bounded operators I and T. We conclude that $\lambda \in \rho(T)$.
(3 points)

Solution of problem 2, version $2(5+10+10+5=30$ points $)$
(a) For any $f \in \mathcal{C}([-\pi, \pi], \mathbb{K})$ we have

$$
\|T f\|_{\infty}=\sup _{x \in[-\pi, \pi]}|T f(x)|=\sup _{x \in[-\pi, \pi]}|f(-x)|=\sup _{x \in[-\pi, \pi]}|f(x)|=\|f\|_{\infty} .
$$

(3 points)

This implies that the operator norm of T is given by

$$
\|T\|=\sup _{f \neq 0} \frac{\|T f\|_{\infty}}{\|f\|_{\infty}}=1
$$

(2 points)

(b) We have that $T f=f$ if and only if

$$
f(-x)=f(x) \quad \text { for all } \quad x \in[-\pi, \pi],
$$

which means that the graph of f is symmetric with respect to the y-axis. Clearly, there exist nonzero functions f which satisfy this condition. A concrete example is given by any nonzero constant function. We conclude that $\lambda=1$ is an eigenvalue of T.
(5 points)
We have that $T f=-f$ if and only if

$$
f(-x)=-f(x) \quad \text { for all } \quad x \in[-\pi, \pi],
$$

which means that the graph of f is antisymmetric with respect to the y-axis. Clearly, there exist nonzero functions f which satisfy this condition. A concrete example is given by $f(x)=x$. We conclude that $\lambda=-1$ is an eigenvalue of T. (5 points)
(c) If $(T-\lambda) f=g$, then

$$
f(-x)-\lambda f(x)=g(x) \quad \text { for all } \quad x \in[-\pi, \pi] .
$$

Replacing x by $-x$ gives

$$
f(x)-\lambda f(-x)=g(-x) \quad \text { for all } \quad x \in[-\pi, \pi] .
$$

Hence, we obtain the following system of equations:

$$
\left(\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right)\binom{f(x)}{f(-x)}=\binom{g(x)}{g(-x)} \quad \text { for all } \quad x \in[-\pi, \pi] .
$$

(5 points)

The coefficient matrix is invertible if and only if $\lambda \notin\{-1,1\}$. In that case we find that

$$
f(x)=-\frac{1}{\lambda^{2}-1}(\lambda g(x)+g(-x)) .
$$

(7 points)

This also implies that

$$
(T-\lambda)^{-1}=-\frac{\lambda}{\lambda^{2}-1} I-\frac{1}{\lambda^{2}-1} T
$$

is bounded because it is a linear combination of the bounded operators I and T. We conclude that $\lambda \in \rho(T)$.
(3 points)

Solution of problem 3 , version 1 and $2(5+5+5=15$ points)
(a) Let $x, y, z \in X$ and $\lambda, \mu \in \mathbb{C}$. The fact that $f_{y}: X \rightarrow \mathbb{C}$ defined by $f_{y}(x)=$ $(T x, y) /\|y\|$ is a linear map follows from:

$$
\begin{aligned}
f_{y}(\lambda x+\mu z) & =\frac{(T(\lambda x+\mu z), y)}{\|y\|} \\
& =\frac{(\lambda T x+\mu T z, y)}{\|y\|} \\
& =\frac{\lambda(T x, y)}{\|y\|}+\frac{\mu(T z, y)}{\|y\|} \\
& =\lambda f_{y}(x)+\mu f_{y}(z) .
\end{aligned}
$$

(5 points)

(b) Let $x \in X$ be arbitrary, then

$$
\left|f_{y}(x)\right|=\frac{|(T x, y)|}{\|y\|} \leq \frac{\|T x\|\|y\|}{\|y\|}=\|T x\| .
$$

This shows that

$$
\sup _{y \neq 0}\left|f_{y}(x)\right|<\infty
$$

for all $x \in X$.
(5 points)
(c) By the uniform boundedness principle it follows that $\sup _{y \neq 0}\left\|f_{y}\right\|<\infty$. Since $(T x, y)=(x, T y)$ it follows with $x=T y /\|y\|$ that

$$
\frac{\|T y\|^{2}}{\|y\|^{2}}=f_{y}\left(\frac{T y}{\|y\|}\right) \leq\left\|f_{y}\right\| \frac{\|T y\|}{\|y\|}
$$

so that

$$
\|T\|=\sup _{y \neq 0} \frac{\|T y\|}{\|y\|} \leq \sup _{y \neq 0}\left\|f_{y}\right\|<\infty
$$

which shows that T is bounded.
(5 points)

Solution of problem 4, version 1 (8 points)

Method 1. Clearly, T is bounded. In addition, T is injective: indeed, $T x=0$ implies $x=0$. If $\operatorname{ran} T$ is closed in ℓ^{∞}, then $T: \ell^{\infty} \rightarrow \operatorname{ran} T$ is a bijective operator between the Banach spaces ℓ^{∞} and ran T. A corollary of the Open Mapping Theorem then implies that the inverse $T^{-1}: \operatorname{ran} T \rightarrow \ell^{\infty}$ is bounded.
(3 points)
The inverse of $T: \ell^{\infty} \rightarrow \operatorname{ran} T$ is given by:

$$
S: \operatorname{ran} T \rightarrow \ell^{\infty}, \quad S\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(x_{1}, 2 x_{2}, 3 x_{3}, 4 x_{4}, \ldots\right) .
$$

Indeed, $S T=I_{\ell \infty}$ and $T S=I_{\mathrm{ran} T}$ and since inverses are unique it follows that S must be the inverse of T.

(2 points)

However, S is not bounded since for the unit vector $e_{n}=(0, \ldots, 0,1,0,0,0, \ldots)$ it follows that $\left\|e_{n}\right\|_{\infty}=1$ while $\left\|S e_{n}\right\|_{\infty}=n \rightarrow \infty$. From this contradiction we conclude that $\operatorname{ran} T$ cannot be closed in ℓ^{∞}.

(3 points)

Method 2. Clearly, T is bounded. In addition, T is injective: indeed, $T x=0$ implies $x=0$. If $\operatorname{ran} T$ is closed in ℓ^{∞}, then we can apply the "Closed Range Proposition" (which is in fact an application of the Open Mapping Theorem): there exists a constant $c>0$ such that

$$
\|T x\| \geq c\|x\| \quad \text { for all } \quad x \in \ell^{\infty} .
$$

(5 points)

However, for the unit vectors $e_{n}=(0, \ldots, 0,1,0,0,0, \ldots)$ we have $\left\|e_{n}\right\|_{\infty}=1$ while $\left\|T e_{n}\right\|_{\infty}=1 / n \rightarrow 0$. This implies that the inequality above cannot hold. From this contradiction we conclude that $\operatorname{ran} T$ cannot be closed in ℓ^{∞}.
(3 points)

Solution of problem 4, version 2 (8 points)

Method 1. Clearly, T is bounded. In addition, T is injective: indeed, $T x=0$ implies $x=0$. If $\operatorname{ran} T$ is closed in ℓ^{1}, then $T: \ell^{1} \rightarrow \operatorname{ran} T$ is a bijective operator between the Banach spaces ℓ^{1} and ran T. A corollary of the Open Mapping Theorem then implies that the inverse $T^{-1}: \operatorname{ran} T \rightarrow \ell^{1}$ is bounded.
(3 points)
The inverse of $T: \ell^{1} \rightarrow \operatorname{ran} T$ is given by:

$$
S: \operatorname{ran} T \rightarrow \ell^{1}, \quad S\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(x_{1}, 4 x_{2}, 9 x_{3}, 16 x_{4}, \ldots\right) .
$$

Indeed, $S T=I_{\ell^{1}}$ and $T S=I_{\mathrm{ran} T}$ and since inverses are unique it follows that S must be the inverse of T.

(2 points)

However, S is not bounded since for the unit vector $e_{n}=(0, \ldots, 0,1,0,0,0, \ldots)$ it follows that $\left\|e_{n}\right\|_{1}=1$ while $\left\|S e_{n}\right\|_{1}=n^{2} \rightarrow \infty$. From this contradiction we conclude that $\operatorname{ran} T$ cannot be closed in ℓ^{1}.

(3 points)

Method 2. Clearly, T is bounded. In addition, T is injective: indeed, $T x=0$ implies $x=0$. If $\operatorname{ran} T$ is closed in ℓ^{1}, then we can apply the "Closed Range Proposition" (which is in fact an application of the Open Mapping Theorem): there exists a constant $c>0$ such that

$$
\|T x\| \geq c\|x\| \quad \text { for all } \quad x \in \ell^{1} .
$$

(5 points)

However, for the unit vectors $e_{n}=(0, \ldots, 0,1,0,0,0, \ldots)$ we have $\left\|e_{n}\right\|_{1}=1$ while $\left\|T e_{n}\right\|_{1}=1 / n^{2} \rightarrow 0$. This implies that the inequality above cannot hold. From this contradiction we conclude that $\operatorname{ran} T$ cannot be closed in ℓ^{1}.
(3 points)

Solution of problem 5, version $1(4+4+4=12$ points $)$
(a) We have that

$$
|f(x)|=\left|a_{1} x_{1}+a_{2} x_{2}\right| \leq\left|a_{1}\right|\left|x_{1}\right|+\left|a_{2}\right|\left|x_{2}\right| \leq \max \left\{\left|a_{1}\right|,\left|a_{2}\right|\right\}\|x\|_{1} .
$$

(2 points)

For the vectors $x=(1,0)$ and $y=(0,1)$ we have $\|x\|_{1}=\|y\|_{1}=1$ while $|f(x)|=\left|a_{1}\right|$ and $|f(y)|=\left|a_{2}\right|$. Hence, we conclude that

$$
\|f\|=\sup _{x \neq 0} \frac{|f(x)|}{\|x\|_{1}}=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|\right\}
$$

(2 points)

(b) If $x=(1,0)$ then $f(x)=g(x)$ implies that $a_{1}=7$. With this choice for a_{1} it follows by linearity that $f(x)=g(x)$ for all $x \in V$.
(2 points)
By part (a) it follows that $\|g\|=7$. So in order to have $\|f\|=7$ as well, we must have that $\left|a_{2}\right| \leq 7$, or, equivalently, $-7 \leq a_{2} \leq 7$.
(2 points)
(c) We can see the map f, where a_{1} and a_{2} are as in part (b), as a norm preserving extension of the map g restricted to V. This implies that norm preserving extensions, of which the existence is guaranteed by the Hahn-Banach Theorem, need not be unique.
(4 points)

Solution of problem 5, version $2(4+4+4=12$ points)
(a) We have that

$$
|f(x)|=\left|a_{1} x_{1}+a_{2} x_{2}\right| \leq\left|a_{1}\right|\left|x_{1}\right|+\left|a_{2}\right|\left|x_{2}\right| \leq\left(\left|a_{1}\right|+\left|a_{2}\right|\right)\|x\|_{\infty} .
$$

(2 points)

For the vectors $x=(1,1)$ we have $\|x\|_{\infty}=1$ while $|f(x)|=\left|a_{1}\right|+\left|a_{2}\right|$. Hence, we conclude that

$$
\|f\|=\sup _{x \neq 0} \frac{|f(x)|}{\|x\|_{\infty}}=\left|a_{1}\right|+\left|a_{2}\right| .
$$

(2 points)
(b) If $x=(1,1)$ then $f(x)=g(x)$ implies that $a_{1}+a_{2}=8$, or, equivalently, $a_{2}=8-a_{1}$. With this choice for a_{1} and a_{2} it follows by linearity that $f(x)=g(x)$ for all $x \in V$.

(2 points)

By part (a) it follows that $\|g\|=8$. So in order to have $\|f\|=8$ as well, we must have that $\left|a_{1}\right|+\left|8-a_{1}\right|=8$, or, equivalently, $0 \leq a_{1} \leq 8$.
(2 points)
(c) We can see the map f, where a_{1} and a_{2} are as in part (b), as a norm preserving extension of the map g restricted to V. This implies that norm preserving extensions, of which the existence is guaranteed by the Hahn-Banach Theorem, need not be unique.

(4 points)

